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Key concepts

= Different types of dynamic loads (responses)

= Functions (loads or responses) of arbitrary complexity may be
modelled as linear sums of sines and cosines.

= Fourier Transform and why we use it.

= Discrete-time Fourier Transform

Large-scale tests on CLT panels
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Full-scale tests on a tall timber building

Dynamic loads - What is a dynamic load?

= Static loads > vectors (amplitude, position, direction)

= Dynamic loads -> temporal nature:
amplitude, position, direction (a combination or all) change in time

... at a rate sufficient to cause Inertial Forces

... those inertial forces also change in time

... the stresses and strains caused also change in time

Types of dynamic loads: ii) Aperiodic
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Figure 1.2: Aperiodic loads
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Types of dynamic loads: i) Periodic
Time, t (s)
Time, t (s) Time, t (s)
(a) Harmonic loads (b) Non-harmonic loads
Figure 1.1: Periodic loads
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Th

e time domain

The traditional way of observing phenomena
(loads, responses

Is a record of what happens to a given parameter
versus time
Issues with measuring it:

Period : long enough

Amplitude : large enough

Force : strong enough

Indirect measurement : signals
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The time-frequency duality: a matter of perspective

Time <- frequency
2 ways of looking at a structural response/load that are
interchangeable

No information is lost in changing from one to the other (in
principle).

The advantage is that changing the perspective the solution
to a dynamic problem can become simpler and/or clearer
(we will see this in our last lecture)
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The frequency domain

By adding up sine waves we can generate any
waveform that exists in the real world

By picking the amplitudes, frequencies and
phases correctly we can (in theory) reproduce it
identically

The same applies the other way round: a real
world signal (load or response history) can be
broken down into a series of sine waves
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The frequency domain

https://bit.ly/3YnWX6d
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Representation of dynamic loads as harmonics

= Principle of superposition — linear structures

... this idea can be extended to dynamic problems!

= Decompose the load into a trigonometric series
= Find the response to each individual harmonic
= Sum all the responses to obtain the total response
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Representation of dynamic loads as harmonics

g(t) = Asin(2zvt + ¢)

e A is the amplitude

e v is the frequency measured in cycles per second

e ¢ is the phase (responsible for getting values other than 0 at ¢t = 0)
e w = 27v is the circular frequency measured in radians per second

e In addition, we can define period as 7= 1/v , the inverse of the frequency
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Representation of dynamic loads as harmonics

*= Any periodic function (load) can be represented as a linear
combination of sines and cosines

n

F(t) = Ao+ > (Ak cos(2mvit) + By sin(2rvit))
k=1
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https://bit.ly/3YnWX6d

Representation of dynamic loads as harmonics

The case of a periodic force from a person walking

~—applied load

—five term approximation

0 01 02 03 04 05 06 07 08 09 1
vTp

ft) =40+ Z (Ag cos(2mvyt) + By sin(2mvyt))
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Representation of dynamic loads as harmonics

The case of a periodic force from a person walking
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Representation of dynamic loads as harmonics

The case of a periodic force from a person walking

~—applied load

f(t) = Ao+ Z (Ap cos(2mvgt) + By sin(2mvit))
k=1

— five term approximation

0 01 02 03 04 05 06 07 08 09 1
vTp

fi(t) =0.929 + 0.1943 cos(27t /T,) + 0.3954 sin(27t /T),) — 0.0352 cos(4nt /T),) + 0.007 sin (47t /T),)
—0.0065 cos(67t/T,,) — 0.0073 sin(67t/T),) — 0.0256 cos(8xt/T},) + 0.0141 sin(8xt/T},)
—0.0304 cos(107t/T,,) 4+ 0.0028 sin(107t /T},)
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Representation of dynamic loads as harmonics

The case of a periodic force from a person walking
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The Fourier Transform

= Periodic = Fourier expansion
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= Aperiodic = Fourier Transform

The Fourier Transform is a mathematical tool that takes a
function in time, measures every harmonic component, and
returns the information in terms of frequencies.
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Why we need the ingredients anyway?
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The Fourier Transform

= Periodic = Fourier expansion
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Principle of superposition: Linear structures

... this idea can be extended to dynamic problems!

= Decompose the load into a trigonometric series
= Find the response to each individual harmonic
= Sum all the responses to obtain the total response
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The Fourier Transform The mathematics of the Fourier Transform

The Fourier Transform of a function in the time domain £ (¢) is defined as:

e = cosh + isind e~ = cost — isind
(o]
F(v) = / (e ™ dt
- T T
® cost) = % sinf = — 2‘_6
while the Inverse Fourier Transform of a function in the frequency domain F(v), is: !

F(t) = do+ Y (Ax cos(2mvit) + By sin(2mvit))
k=1

f(r) = / F(v)e*™™dv

(o]

ft)=Ao+ D [Cpe®™!]
k=—

n
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The mathematics of the Fourier Transform The mathematics of the Fourier Transform

* Formulation as a sum of exponentials = Formulation as a sum of exponentials

() = A + C .e‘ZTl'il/),f
o ’ A; [ ] Polar notation: amplitude, vector

(@) = Ao+ > (Ax cos(2mvxt) + By sin(2rvyt))

‘ f(t) = Ay + Z [C},,czﬂ-w"'t}

P z + iy = r(cos 6 + isin @) = re??
4D c=—
k [ Frequency (v Cosine Awplitude (Ag) [ Sine Amplitude (By) 1
1 e 1:7’, %) e n“|lq‘|;; 2 8 1(:_lzuln| Y k Frequency (1) C'y, r = |$ -+ Zy| = 1/ xz -+ y2 and tan @ = i
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1i .‘:,’ ;p -0, “U(:": —‘lyvltyl:Vl_r"i 4 74/7‘7 . . . .
wlf, | 00304\ 0.0028 ’E *Z;, C’keQﬂ'“’kt e Tk€l¢k€27ﬂ'ykt — Tkel(Qﬂ'th+¢k)
2 2/T, . .
A A V7, 0.00715 +i0.1977 n ' Cx is a complex pronentlal
1 1/, 0.09715 -i0.1977 f(t) = Ap + E et 2TVt or) 'k is modulus
2 2/, -0.0176 -10.0035 0o
3 3/1, -0.00325 +i0.00365 —7 2mivt
1 \/T, -0.0128 -i0.00705 ft) = / F(v)e dv
5 5/T, -0.0152 -i0.0014 —o0
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The Fourier Transform The Fourier Transform

n

f(t) = Ao+ D (Ak cos(2mvit) + By sin(2mvyt))

k=1 * Properties
o0 it Property £(t) EF(v)
F(v) = f(t)e dt [T Lincarty afi() + bFa(t) | aFu(0) + bE5(0) |
o 7 CONVOITTION theoTerm T * J2(f) T (D)D)
3. Product theorem f1(t) f2(t) Fi(v) * Fa(v)
; I I "o . 4. Time shifting f(t—to) F(v)e 2rivto
- - 27 i & - )
o i f(t) = / F(v)e=™"dv 5. Frequency shifting f(t)e—2mivot F(v — 1)
N‘EI:'"’; i ] I 9 6. Scaling f(at) la|=r*F(v/a)
B AV N
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Example: FT of the Dirac Delta Function Example: FT of the Dirac Delta Function
* The Dirac Delta function 5(t —7) = { 0 for t#7 = The Dirac Delta function 5t — 1) = { 0 for t#7
N for t=1 for t=1
* It is called a function but we can think of it as an operator, and one that
o(t = )dt = 1 has a very important characteristic:
—00
o
/ o(t — ) f()dt = f(7)
> So the Dirac Delta can be used to ‘pick out” individual values of a
T t function
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Example: FT of the Dirac Delta Function Which one of these plots corresponds to the
Fourier spectra of the cosine function?
= FTof 5(1 - a) F = /00 5t — —2nivtdt . w»
“) e =g f(t) = cos(2mat) ‘ ’ \ ‘

/ o(t—7)f(t)dt = f(r) —> F(v) = / 8(t — a)e™ 2"Vt 4 o 2riva /\/\;/\/v\ ‘l‘ ‘ ]
- IFTof ¢ 27iVa . %
f(t) = / F(V)ezmwd\/ — / e—Zn’ivaeln’ivrdV ={5(r - a) t *[_‘_|;

(o] (o]
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The frequency domain: a familiar domain

' (.\‘] ) = Cochlea: tapered
‘«3\‘ : » membrane coil
1)
a = = Real time Fourier
decomposition

= Stethoscope

= Frequency examples
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Fourier analysis is time-consuming

Kelvin's harmonic analyser (1878) Someone’s (probably a geek) Lego Mindstorms version (2022)
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Continuous to discrete: analogue to digital
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The Discrete-time Fourier Transform

» The DTFT:

X(eia))= Z x[n]e—ia)n

= The synthesis equation:

x[n] = 1 X (€)' dw
2 207
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The Discrete-time Fourier Transform Fast Fourier Transform (FFT) Algorithm
* The main differences between discrete-time and .
continuous -time FT: —— )
N/2- point
gl  DFT
= Periodicity of the DFT 1o ]
= Finite interval of integration of the synthesis tlo-]
equation 3l N/2- point
s~ DFT
James W. Cooley, IBM John Tukey, AT&T Bell Labs x[7]o—>—
https://www.youtube.com/watch?v=iTMnOKt18tg.
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