
CIVE70095: Structural Dynamics Autumn 2023/2024

Lecture 1: Dynamic actions and responses

Lecturer: Dr Christian Málaga-Chuquitaype c.malaga@imperial.ac.uk

Disclaimer: Although carefully edited, these notes have not been subjected to the scrutiny reserved for formal
publications. Therefore, they may be distributed outside this class only with the permission of the Lecturer.

Learning outcomes

By the end of this session you should be able to:

• Classify different dynamic loads according to broad qualitative descriptions.

• Appreciate that loads of arbitrary complexity may be modelled as linear sums of sines and cosines.

• Understand what a Fourier Transform is as well as why and how to use it.

1.1 Dynamic loads

Thus far, in your previous studies, you have been mainly concerned with the response of structures subjected
to different types of static loads (i.e., loads that do not change in time or whose change in time is slow relative
to the dynamic properties of the structure). By contrast, the single defining feature of this course, and the one
that sets it apart from those that you are already very familiar with, is that the loads we are about to consider are
dynamic loads. That is, the loads we are interested in this course vary in time. This implies that:

• the amplitude of the dynamic load may change with time,

• the position of the dynamic load may change with time,

• the direction of application of a dynamic load may change with time, or,

• some combination of these three characteristics may be involved.

Furthermore, given that the loading action is now a function of time, the corresponding structural stresses and
strains will also be functions of time. The fact that the position, magnitude and direction of application of dynamic
loads vary with time renders our analyses more complex than the static load cases that you are already used to
deal with.
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Forced vibration caused by me-
chanical equipment

The effects caused by machines
and equipment with rotative com-
ponents that displace periodically
are included within this group.

Force 

Time 

 

Wave (marine) loading

Some hydraulic structures are
subjected to the (periodic) dy-
namic effects of hydraulic pres-
sures.

Pressure 

Time 

Impact actions

When one mass collides with a
structure, it induces an impul-
sive force (applied to both mass
and structure) which causes vibra-
tions.

Force 

Time 

Blast

An explosion causes air pressure
waves (and ground movements)
which affect nearby structures.

Pressure 

Time 

Earthquake loading

Earthquake ground-motions in-
duce accelerations and displace-
ments that can severely damage
structures.

Acceleration 

Time 

 

Wind loading

The magnitude of pressures
that wind exerts over buildings
changes with time. This induces
vibrations which may become
critical (e.g. fatigue).

 

Height 

Pressure 

t =tn 

Table 1.1: Examples of dynamic loads. Adapted from [CP93]
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1.1.1 Types of dynamic loads

Table 1.1 presents some examples of the most common types of actions we, as structural engineers, deal with.
It can be appreciated from Table 1.1 that most loads can be broadly grouped into two generic categories.

• Periodic : such as those caused by rotating machinery or waves

• Aperiodic : like the actions caused by earthquakes or blast

Furthermore, there may be significant differences between the loads considered as periodic. In fact, the group of
periodic loads may refer to harmonic and non-harmonic loads. See Figure 1.1.

Likewise, the group of aperiodic loads includes both impulsive loads (such as those arising from blast) and other
more general transient loads (such as those caused by earthquakes). See Figure 1.2.
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(a) Harmonic loads
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(b) Non-harmonic loads

Figure 1.1: Periodic loads
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(a) Impulsive loads
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(b) Transient (seismic) loads

Figure 1.2: Aperiodic loads
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1.1.2 Basic approach in time-domain analysis

The main focus of our course is on linear elastic structures (i.e., structures that have not exceeded or are
not expected to exceed their yield or elastic limit). That means that if we take a given structure (e.g. a simply
supported beam) and apply to it a point load (e.g. in the middle), we will observe a certain deformation which
will follow a pattern that we already know from our previous studies. That also means that if we apply a second
load (e.g. a distributed load) we will obtain a different displacement profile whose solution will also be known to
us from our previous courses. But most importantly, we will recognise that for a linear structure, the order of
application of loads is not important. And that the total response is simply the sum of the two displacement
profiles corresponding to each applied load individually. This principle is more formally called principle of linear
superposition. Very importantly: this idea can be extended to dynamic problems as well! For a structure re-
sponding in the linear range, if we apply two sinusoidal loads simultaneously, the total response would be equal
to the sum of the individual responses due to each of the sinusoidal loads.

Therefore, for a linear structure, we may determine the response to a load of arbitrary complexity by:

1. decomposing the load into a series of harmonics,

2. finding the response of the structure to each individual trigonometric (harmonic) term,

3. then summing all of these responses together to obtain the total response.

1.2 From the Fourier Series to the Fourier Transform

1.2.1 Periodic functions as combinations of sinusoids - Fourier Series

Any periodic function can be represented as a linear combination of sines and cosines. A sine is a function of the
form:

g(t) = A sin(2��t + �) (1.1)

where:

• A is the amplitude

• � is the frequency measured in cycles per second

• � is the phase (responsible for getting values other than 0 at t = 0)

• ! = 2�� is the circular frequency measured in radians per second

• In addition, we can define period as T = 1∕� , the inverse of the frequency.

A cosine function can be viewed as a shifted sine (e.g. a sine with � = �∕2).
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Any periodic function (representing a load or a response) can be approximated by a function f (t):

f (t) = A0 +
n
∑

k=1

(

Ak cos
(

2��kt
)

+ Bk sin
(

2��kt
))

(1.2)

The combination of both sines and cosines, as opposed to just sines, allows for the representation of loads (load
functions) with f (0) ≠ 0 in a simpler way than phase shifting. (e.g. f (t) = A0 +

∑n
i=1

(

Ai sin
(

2��kt + �i
))

). But
both are equivalent!

As an example, let’s consider the load from a person walking approximated by Equation 1.3 and shown in Figure
1.3.

fperson(t) = 0.929 + 0.1943 cos
(

2�t∕Tp
)

+ 0.3954 sin
(

2�t∕Tp
)

− 0.0352 cos
(

4�t∕Tp
)

+ 0.007 sin
(

4�t∕Tp
)

−0.0065 cos
(

6�t∕Tp
)

− 0.0073 sin
(

6�t∕Tp
)

− 0.0256 cos
(

8�t∕Tp
)

+ 0.0141 sin
(

8�t∕Tp
)

−0.0304 cos
(

10�t∕Tp
)

+ 0.0028 sin
(

10�t∕Tp
)

(1.3)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
o

ad
/W

ei
g

h
t 

o
f 

p
er

so
n

 

t/Tp

applied load

five term approximation

(a) Periodic load of a person walking and its Fourier representation
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(c) Second component
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Figure 1.3: Fourier analysis of a periodic load from a person walking
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The frequency analysis of fperson(t), can be summarized as shown in Table 1.2. This table provides the ampli-
tudes of sine waves and cosine waves corresponding to each frequency of fperson.

The representation of a periodic function (load or response) as a linear combination of sines and cosines is known
as Fourier Series Expansion. This can be represented graphically as depicted in Figure 1.4 for each harmonic
component.

k Frequency (�k) Cosine Amplitude (Ak) Sine Amplitude (Bk) Amplitude of the harmonic (
√

A2
k + B

2
k)

1 1∕Tp 0.1943 0.3954 0.4406
2 2∕Tp -0.0352 0.007 0.0359
3 3∕Tp -0.0065 -0.0073 0.0098
4 4∕Tp -0.0256 0.0141 0.0292
5 5∕Tp -0.0304 0.0028 0.0305

Table 1.2: Fourier analysis of a periodic load from a person walking
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Figure 1.4: Fourier spectrum of a periodic load from a person walking

1.2.2 Non-periodic functions as combinations of harmonics - Fourier Transform

We have just seen how the Fourier Series expansion helps us to characterise a periodic function (e.g. pedestrian
load) in terms of its frequency components and their amplitude. The Fourier Transform is a tool for obtaining
such frequency and amplitude information for sequences and functions that are not obviously periodic or are
decidedly aperiodic. Take for example the history of accelerations recorded during the Mexico Earthquake of
1985, a typical example of a transient load. Its corresponding Fourier Spectrum is presented in Figure 1.5. It can
be observed from this figure that the maximum amplitude takes place at a period close to 2 seconds and that
the amplitudes for longer periods are very low. This is peculiar to this record and is due to the site amplification
caused by the soft soil conditions and configuration of the Mexico City area.
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The Fourier Transform is a mathematical tool that takes a function in time, measures every harmonic
component, and returns the information in terms of frequencies.

Or
Given the smoothie, it finds the recipe!
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(a) Periodic load of a person walking
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(b) Fourier expansion of the periodic load on the left

(c) Accelerogram from the Mexico City Earthquake, 1985 (d) Fourier Spectrum of the accelerogram on the left

Figure 1.5: Fourier expansion and Fourier spectrum

We define the Fourier Transform (FT) and its Inverse (IFT) as:

The Fourier Transform of a function in the time domain f (t) is defined as:

F (�) = ∫

∞

−∞
f (t)e−2�i�tdt (1.4)

while the Inverse Fourier Transform of a function in the frequency domain F (�),is:

f (t) = ∫

∞

−∞
F (�)e2�i�td� (1.5)

Equation 1.5 is the continuous generalization of expressing f (t) as a combination of sinusoids, as will be dis-
cussed below. This expression is known as the Inverse Fourier Transform. On the other hand, Equation 1.4
provides the means for finding the amplitude for each frequency �, given that the integral indeed converges. The
result of applying the Fourier Transform to a function is called frequency spectrum or in short the spectrum, as
we have seen before. Note that some texts may use slightly different definitions of FT and IFT.
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1.2.3 Mathematical background for the Fourier Transform - Complex numbers and ex-
ponentials

The best way to understand Equations 1.4 and 1.5 is to see their relation to Equation 1.2. To this end, it is
important to recall that another way of writing sinusoids, such as those presented in Equation 1.2, relies on the
following complex exponential equalities:

ei� = cos� + isin� e−i� = cos� − isin� (1.6)

where i is the square root of −1. Through addition and subtraction, Equations 1.6 can be rewritten as:

cos� = ei� + e−i�
2

sin� = ei� − e−i�
2i

(1.7)

Therefore, by substituting Equations 1.6 into Equation 1.2:

f (t) = A0 +
n
∑

k=1

[

Ak
2

(

e2�i�kt + e−2�i�kt
)

+
Bk
2i

(

e2�i�kt − e−2�i�kt
)

]

(1.8)

if we denote:

Ck =
Ak − iBk

2
; k > 0

Ck =
Ak + iBk

2
; k < 0

Ck = 0 ; k = 0
�k = −�−k ; k < 0 (1.9)

Equation 1.8 can be rewritten as:

f (t) = A0 +
n
∑

k=−n

[

Cke
2�i�kt

]

(1.10)

Using this new notation, the frequency analysis of Table 1.2 can be reformulated as:

k Frequency (�k) Ck
-5 −5∕Tp -0.0152 +i 0.0014
-4 −4∕Tp -0.0128 +i0.00705
-3 −3∕Tp -0.00325 -i0.00365
-2 −2∕Tp -0.0176 +i0.0035
-1 −1∕Tp 0.09715 +i0.1977
0 0 0
1 1∕Tp 0.09715 -i0.1977
2 2∕Tp -0.0176 -i0.0035
3 3∕Tp -0.00325 +i0.00365
4 4∕Tp -0.0128 -i0.00705
5 5∕Tp -0.0152 -i0.0014

Table 1.3: Fourier analysis of a periodic load from a person walking. Alternative formulation.
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A further manipulation of Equation 1.6 can be done by employing the polar notation of complex numbers as:

x + iy = r(cos � + i sin �) = rei� (1.11)

where:

r = |x + iy| =
√

x2 + y2 and tan � =
y
x

(1.12)

using this representation, we can get:

Cke
2�i�kt = rke

i�ke2�i�kt = rke
i(2��kt+�k) (1.13)

where:

rk =

(

A2
k + B

2
k

4

)1∕2

and tan�k =

⎧

⎪

⎨

⎪

⎩

−Bk
Ak

k > 0
Bk
Ak

k < 0
(1.14)

From all the above we obtain:

f (t) = A0 +
n
∑

k=−n
rke

i(2��kt+�k) (1.15)

where �k is the ktℎ frequency, rk is the amplitude and �k is the phase.

If we now generalize the summation in Equation 1.15 for a continuous function, we get Equation 1.5:

f (t) = ∫

∞

−∞
F (�)e2�i�td�

By the same token we can obtain Equation 1.4.

Table 1.4 lists some properties of the Fourier transform which make it useful in practice.

Property f (t) F (�)
1. Linearity af1(t) + bf2(t) aF1(�) + bF2(�)
2. Convolution theorem f1(t) ∗ f2(t) F1(�)F2(�)
3. Product theorem f1(t)f2(t) F1(�) ∗ F2(�)
4. Time shifting f (t − t0) F (�)e−2�i�t0
5. Frequency shifting f (t)e−2�i�0t F (� − �0)
6. Scaling f (at) |a|−1F (�∕a)

Table 1.4: Fourier analysis of a periodic load from a person walking. Alternative formulation

Properties 2 and 3 in Table 1.4 state that convolution in the time domain corresponds to multiplication of the
coefficients in the frequency domain, and vice versa. This is one of the most useful properties of the Fourier
Transform. Property 4 in Table 1.4 states that shifting of the original function in time corresponds to a change of
phase of the sinusoids comprising the function. Similarly, a sinusoidal modulation in the function corresponds to
a phase shift in the frequency (Property 5).
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Example 1:

Let’s introduce the Dirac Delta function �(t) such that:

• Dirac delta function:

– Definition

�(t − �) =
{

0 for t ≠ �
∞ for t = �

– Properties

∫

∞

−∞
�(t − �)dt = 1

∫

∞

−∞
�(t − �)f (t)dt = f (�)

• Now let’s find the Fourier Transform of a Delta function:

F (�) = ∫

∞

−∞
�(t − a)e−2�i�tdt

recalling the properties of the Delta function as explained above, we can see that it can be understood as
an operator that when multiplied with a given function it outputs the value of the function at the location of
the delta, e.g. ∫ ∞

−∞ �(t − �)f (t)dt = f (�). Then:

F (�) = ∫

∞

−∞
�(t − a)e−2�i�tdt = e−2�i�a

• That means that the Inverse Fourier Transform of a complex exponential is an impulse function:

f (t) = ∫

∞

−∞
F (�)e2�i�td� = ∫

∞

−∞
e−2�i�ae2�i�td�

f (t) = �(t − a) = ∫

∞

−∞
e2�i�(t−a)d�
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Example 2:

Let f (t) be a harmonic load of the form: f (t) = cos(2�at). Find its Fourier transform.
Slide 1

Considering the complex exponential representation of the cosine:

F (�) = ∫

∞

−∞
cos(2�at)e−2�i�tdt

= ∫

∞

−∞

(

ei2�at + e−i2�at
2

)

e−i2��tdt

= 1
2

[

∫

∞

−∞
ei2�ate−i2��t + ∫

∞

−∞
e−i2�ate−i2��t

]

and finally, considering the results of the previous section where f (t) = �(t − a) = ∫ ∞
−∞ e

2�i�(t−a)d� :

F (�) = 1
2
[�(−� + a) + �(−� − a)]

F (�) =
�(� − a) + �(� + a)

2

Since the amplitude of a delta function is essentially undefined at its location tends to infinity, then we can
conclude that F (�) is actually equal to two delta functions located at −a and +a

Figure 1.6 presents f (t) and F (�) .

F(
ν)
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Figure 1.6: f (t) = cos(2�at) (left) and its Fourier transform (right) - Complete in class
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1.3 The Discrete Time Fourier Transform

1.3.1 Discrete signals

A number of signals are continuous and have a continuous range of frequencies and the functions that we employ
to model them can be continuous as well. However, more often than not, the function describing a phenomena
(load or response) is unknown. In those cases, experimental data needs to be gathered and analysed, which
is usually done by measuring discrete values at various points in time. This data will be analysed by digital
computers and we should be mindful that the computers employed in our everyday engineering calculations work
inherently with discrete variables (bits) after all. Therefore, for all practical purposes we will be more interested in
a Fourier Transform in the discrete time and discrete frequency domains.

1.3.2 Discrete Time Fourier Transform

The Discrete Fourier Transform (DFT) maps a discrete periodic series x[n], where n is an integer and the period
is N to another function X(ei!) of frequency coefficients. In fact, our previous discussion has highlighted that
the Fourier series coefficients can be viewed as samples of an envelope function and that as the period of the
function increases, the samples become more and more finely spaced. Using the same principle, which will be
discussed in more detail in class, we can arrive to the following pair of equations for the Discrete-time Fourier
Transform:

X(ei!) =
∞
∑

n=−∞
x[n]e−i!n (1.16)

x[n] = 1
2� ∫2�

X(ei!)ei!nd! (1.17)

1.3.3 Fast Fourier Transform

But the success and power of the Fourier transform would have stalled were it not for an ingenious algorithm
that would make it easy for digital computers to compute the DFT. In fact, the publication of Cooley and Tukey’s
algorithm [CT65] in 1965 was a turning point in digital signal processing and numerical analysis. This is probably
the reason for the ubiquity of Fourier analysis in nearly all aspects of human endeavour today, from music and
video processing to structural analysis. In essence, Cooley and Tukey showed that the DFT, previously thought
to require N2 arithmetic operations consuming hundreds of computer hours could in fact be calculated much
quicker by their new Fast Fourier Transform algorithm using only N logN operations. We do not have time
as part of this course to delve into the fascinating intricacies of FFT computations but there are many good
resources online to which you can refer in case of personal interest, including the excellent lecture by Prof
Demaine: https://www.youtube.com/watch?v=iTMn0Kt18tg.

https://www.youtube.com/watch?v=iTMn0Kt18tg
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Appendix: Code representation of dynamic loads

It is possible to formulate a full mathematical description of some forms of periodic loading (like rotating machin-
ery). On the other hand, the three most common natural dynamic loads that we will encounter are earthquake,
wind and wave loading for which a full description is very difficult. Instead codes of practice assume very simple
descriptions of these loading actions.

The loads associated with wind are applied directly to the structure in the form of pressures and are charac-
terized in terms of a wind velocity. The pressure distributions encountered in reality depend upon the specific
geometry of the structure being considered as well as factors related to the uniformity and predominant direction
of the wind field as well as interactions with its surroundings. Given that such effects may very quickly become
complex, codes define conservative load factors as a surrogate for the calculation of equivalent loads.

Something similar happens in the case of earthquake loading. As we know, earthquakes by themselves (Figure
1.7a) do not result in the direct application of loads upon a structure, rather they result in strong ground-motions
that shake structures. Those support movements will in turn produce relative accelerations in the building leading
to inertial loads within the structure itself, as we will discuss further in the next class. To avoid dynamic calcu-
lations, conventional code-based approaches use equivalent static procedures that define earthquake loads to
be directly applied to the structure in a static manner. Numerous assumptions are involved in the process and
it is important to have them present when conducting code-based analyses. In Eurocode 8 [EC08], earthquake
actions are prescribed in terms of an elastic response spectra. These spectra (given in Figure 1.7b) allows us to
determine the level of equivalent lateral earthquake load for a particular structure characterized primarily by its
first natural period. We will explore what a response spectrum is and how is it obtained later in the course. It must
be kept in mind, however, that the loading cannot be prescribed in terms of such generic static representations in
all cases and that in order to perform more realistic structural analyses we must use acceleration time-histories
directly imputed into our models, such as those shown in Figure 1.7a. The issue then becomes how to account
for the variability in the ground-motion characteristics.

(a) Acceleration series of some famous earthquakes plotted at the
same scale [BC04]

 

(b) Eurocode 8 Seismic Design Spectra

Figure 1.7: Code representation of seismic loads
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